Search This Blog

Tuesday, December 6, 2016

Fund-raising offer: Basal-rich K7 and/or Global 10 genetic map


I'm now taking donations for 2017. Anyone who donates $12 USD or $16 AUD, or more, will get the Basal-rich K7 ancestry proportions. Of course, you'll need to send me your genotype data for that to happen (Ancestry.com, FTDNA or 23andMe).

The Basal-rich K7

Please send your non-tax deductible donations via PayPal to eurogenesblog at gmail dot com. E-mail your genotype data to the same address. Please don't assume that I already have your data. I'll try and get back to everyone within a day and will put things on hold if that becomes an unrealistic target.

Using your Basal-rich K7 ancestry proportions, I'll show you where you cluster in the new and improved Fateful Triangle. Many people will probably land somewhere along the cline made up of Late Neolithic/Early Bronze Age Europeans and Middle/Late Bronze Age steppe herders and warriors. This, to me, looks like a cline produced by the expansion of early Indo-Europeans into Western and Central Europe.


For an extra donation of $16 USD or $21 AUD, those of you feeling more adventurous will also receive the Global 10 genetic map, and, more importantly, coordinates for ten dimensions.

A fresh look at global genetic diversity

The Basal-rich K7 is the best ancient ancestry test that I've been able to come up with. It correlates strongly with latest research reported in scientific literature. And, in fact, in some instances it probably trumps latest scientific literature.

For instance, Broushaki et al. 2016 characterized Early Neolithic farmers from the Zagros Mountains, Iran, as 62% Basal Eurasian and 38% Ancient North Eurasian-related (Figure S52). This, considering formal statistics like the D-stat below, with AfontovaGora3 (AG3) as the ANE proxy, is unlikely to be correct, despite the fact that AG3 is a relatively low quality sample.

D(Yoruba,Iran_Neolithic)(Villabruna,AfontovaGora3) 0.0223 Z 2.812

On the other hand, the Basal-rich K7 models the early Zagros farmers as 39.05% Ancient North Eurasian and 56.67% Basal-rich (which is probably a composite of Basal Eurasian and something Villabruna-related). To me this appears to be the more sensible solution.

Moreover, Lazaridis et al. 2016 characterized South Caspian forager Iran_HotuIIIb as more Basal Eurasian than the early Zagros farmers (Supplementary Information 4). The Basal-rich K7, on the other hand, shows the opposite. The D-stat below suggests that the Basal-rich K7 is closer to the truth.

D(Chimp,Ust_Ishim)(Iran_Neolithic,Iran_Hotu) 0.0156 Z 1.337

There are other such examples, and I might post them in the comments. In any case, the point I'm making is that the Basal-rich K7 is a solid piece of work and it's likely to remain relevant for a long time. Indeed, I'll be updating the Basal-rich K7 spreadsheet regularly as new ancient samples roll in, which means that you'll be able to model yourself as newly sampled ancient populations using the Basal-rich K7 ancestry proportions (for instance, see here).

The only problem with this test is that it's optimized for Eurasians. As a result, it might be sensible for anyone with significant (>5%) Sub-Saharan ancestry to skip the Basal-rich K7 and just ask for the Global 10 genetic map and coordinates.


You can use the Global 10 coordinates to model your ancient and recent fine-scale ancestry, just as you would using mixture proportions. In fact, I'd say the Global 10 coordinates are more useful in this respect than any mixture test, including the Basal-rich K7.

Thanks in advance for your support. Keep in mind that the more cash I raise the busier things will be on this blog in 2017, which, by all accounts, is shaping up to be the year for ancient DNA.